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The free-convective flow induced when a semi-infinite horizontal fuel surface 
burns in a quiescent oxidizing atmosphere is considered. For high values of the 
Grashof number the dominant feature of the flow is a boundary layer close to 
the surface within which there is a flame or intense reaction zone. A n  outer flow 
or fire-wind is induced by entrainment into this boundary layer. A simple experi- 
ment supports this overall picture of the flow. 

1. Introduction 
In  this paper we consider the flow over the horizontal surface -co < x < co, 

y = 0 which is induced when the fuel surface x > 0, y = 0 burns in an oxidizing 
atmosphere. The surface x < 0, y = 0 is supposed impermeable and chemically 
inert. 

Stewartson (1958) showed that when the upper surface of a semi-infinite 
horizontal solid surface is heated induced pressure gradients lead to the develop- 
ment of a boundary-layer flow over the upper surface, commencing at  the leading 
edge. Stewartson assumed the fluid to be a Boussinesq fluid and therefore ac- 
counted for density variations only in the buoyancy term. With the same assump- 
tion Rotem & Claassen (1969) extended Stewartson’s solutions and, using a 
colour schlieren technique, provided qualitative experimental confirmation of 
the existence of such a flow. Jones (1973) showed that if the plate is inclined 
downwards slightly then the initial flow development is as for the horizontal case 
but that the flow eventually separates. Clarke & Riley (1975, henceforth referred 
to as I) considered the prototype problem of Stewartson but allowed for density 
changes and temperature-dependent viscosity and thermal conductivity. They 
also allowed the heated surface to be permeable and considered the effects of 
blowing upon the flow. 

In  the present work the horizontal surface -co < x < 00, y = 0 is such that 
for x < 0 it is impermeable and inert whilst for x > 0 it is a fuel surface, either 
solid or liquid. The fuel in x > 0 is .allowed to evaporate from the surface and 
burn in the oxidizing atmosphere y > 0. The analysis in I ,  which includes the 
effects of transpiration from the surface, models the evaporative nature of the 
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fuel surface. In  this combustion problem a flame-sheet model is adopted so that 
there is a thin intense reaction zone, not coincident with the fuel surface, in which 
chemical energy is liberated. Although the fluid is therefore heated internally, 
rather than from the surface, the same mechanisms as induce a pressure gradient 
in the inert case are responsible for the flow under consideration. The Boussinesq 
approximation is not appropriate here and, as in I ,  we use Howarth’s transfor- 
mation, which allows one to take account of density changes, in order to  describe 
the boundary-layer flow. 

Free convection associated with the burning of a vertical or inclined semi- 
infinite plate has been considered by Kim, de Ris & Kroesser (1971). In  that 
particular configuration buoyancy effects are directly responsible for the fluid 
motion. Like Kim et al. we adopt a one-step irreversible chemical reaction to 
describe the chemical kinetics and we assume that the Lewis number is unity so 
that we may introduce the so-called Shvab-Zeldovich variables. We also assume 
that the Grashof number is large, which allows us to adopt a perturbation 
approach in our solution of the governing equations. 

In  $2  the governing equations are derived under the assumptions outlined 
above. In  $ 3  advantage is taken of the high Grashof number and the leading 
terms in each of outer and inner, or boundary-layer, regions are derived. The 
results are discussed in $ 4  with particular attention given to the flame-sheet 
location, surface heat and mass transfer rates and surface shear stress. Also, the 
phenomenon of ‘surface combustion ’ is briefly discussed. The flow in the outer 
region is induced by the sink-like effect of the boundary layer. Thus the boundary 
layer entrains fluid from the ambient oxidizing atmosphere, and it is this which 
enables the combustion process to be maintained. This outer flow models the 
‘ fie-wind’ which is observed to blow over the perimeter of a fire of finite extent. 
Smith, Morton & Leslie (1976) point out that conventional fire-plume models 
fail to provide an adequate explanation for the fire-wind. They consider a 
chemically inert situation in which a finite strip in the horizontal boundary 
-00 < x < 00, y = 0 is maintained a t  a higher temperature than the ambient, 
and solve the Navier-Stokes equations numerically. They conclude that the fire- 
wind is associated with the dynamic pressure field, which produces a strong 
coupling between the f i e  zone and its environment. This view is confimed by 
our work, at least in so far as the motion arises from induced pressure gradients 
within the boundary layer due to density changes brought about by heat release 
in the combustion zone. 

In  $ 6 we describe a simple experiment which supports the results that we have 
obtained. Solid combustible material of k i t e  extent is embedded in a horizontal 
surface and bounded laterally to simulate a plane flow. A boundary layer develops 
from each edge of the combustible material. Although these boundary layers 
eventually interact to form a buoyant vertical plume, the flame sheet in the 
neighbourhood of a leading edge may be expected to behave as predicted analy- 
tically for the semi-infinite geometry. Schlieren pictures substantiate this ex- 
pectation both qualitatively and, to some degree, quantitatively too. 
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2. The governing equations 
A one-step, irreversible chemical reaction scheme is adopted in which 

vXX + vFF+ v ~ P ,  ( 1 )  

where X, F and P denote oxidant, fuel and product species respectively. The 
quantities v, (a = X, F, P) in ( 1 )  are the stoichiometric integers. The equations 
of motion for steady flow of a compressible fluid, in the small Mach number 
limit, may be written in dimensionless form as follows: 

a(puk)/axk = O ,  (2) 

where PF = ~ + Q Y F ,  PX = O f Q f 7 ' ~ - 7 ' ~ , ) ,  (4b) 
p ( i  +e)  = I .  (5) 

In these equations (x,,z2) EE (x,y) are dimensionless co-ordinates based on a 
length L, the dimensionless velocity components (ul, u2) E (u, v) are referred to 
the velocity V, = v i  g?L*, and the pressurep is referred top, c, where a subscript 
00 denotes a value in the ambient atmosphere-. The scales for the dimensionless 
density p, coefficient of viscosity p, thermal conductivity h and temperature 8 
are chosen as p,, p,, A, and T,, where it is convenient to define 8 such that 
8 = 0 in the ambient atmosphere. The quantities ya (a = X ,  P) are the stoichio- 
metrically adjusted mass fractions related to the species mass fractions c, by 
ya = c,/v,JE, where W, represents the molecular weight. We define 

Q = (VX&+VFWF)H, 

where - H is the dimensionless energy of formation of the product species P, 
so that Q > 0. We note that all dimensionless energies are referred to C,T,, 
where C, is the coefficient of specific heat at constant pressure, assumed the 
same for all species. The parameter e,  which characterizes the flow under con- 
sideration, is related to the Grashof number CJr = L3g/vt by e = Gr-* and 
throughout we assume Gr > 1. The Prandtl number CT is assumed to be constant 
as is the Schmidt number; the Lewis number is taken as unity. 

Equations (2) and (3) are the continuity and momentum equations respectively 
and we note that in (3) we have assumed that there is no contribution to the 
buoyancy force from changes in composition. Equations (4) are the Shvab- 
Zeldovich forms for energy and species conservation. The advantages of the 
Shvab-Zeldovich formulation for the coupling functions Pa are that the energy 
and mass source terms associated with the chemical reaction do not appear 
explicitly. Equation ( 5 )  is the equation of state. If, in (a), we set Q E 0 then 
(2)-(5) are as for the inert-gas case, which has been discussed extensively in I, 
although it should be noted that in I the choice of the typical length L differs 
slightly from that adopted here. 

27 FLM 74 
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Since the coupling functions which satisfy (4a )  involve a combination of the 
temperature and mass fractions further information is necessary before the 
system of equations, together with boundary conditions which are to be pre- 
scribed, is determinate. Here we adopt the assumption that the chemical time 
associated with the irreversible reaction (1) is zero. This, the so-called Burke- 
Schumann limit, results in a flame-sheet model in which the intense chemical 
reaction is conhed to the sheet y = ys(x), whose location is unknown a priori. 
Very small chemical times are realized in practice and for the detailed structure 
of this flame zone reference may be made to Clarke (1975). It is sufficient for our 
purposes to note that 

We remark that although the mass fractions and temperature are continuous at  
the flame sheet their first derivatives are not. However the coupling functions 
pa, which satisfy (4a), are continuous with continuous first and second derivatives. 

It is the heat released in the flame zone which is directly responsible for the 
induced horizontal pressure gradient, which in turn maintains the flow under 
consideration. 

Consider now the boundary conditions which are to be satisfied. As we go 
away fiom the boundary the ambient conditions must ultimately be realized, 
thus 

U, v, p ,  8, pa(a = X ,  El) + o as (x2 + y2)+ --f co, y .t. 0. (7) 

For x < 0, y = 0 we have an impermeable, chemically inert, insulating surface 
and so 

The boundary conditions on the evaporating fuel surface x > 0, y = 0 require a 
more careful consideration. Whether it is a solid surface or the surface of a liquid- 
fuel pool we assume that it is a no-slip surface, for in the latter case we may anti- 
cipate that in this combustion situation the surface will become contaminated 
and therefore behave like a rigid surface. This means of course that we are 
neglecting any induced fluid motion within a liquid-fuel pool. Thus 

u = O  for x > O ,  y = O .  (9) 

The transpiration velocity from the fuel surface is not prescribed but is to be 
determined; we write the dimensionless rate of surface mass transfer as m = 
We assume that the surface maintains its constant vapourization temperature to 
give 

O = A  for x > O ,  y=O.  (10) 

The dimensionless adiabatic evaporation condition at the surface, which states 
that all the energy transfer goes into liberating fuel vapour, yields 

h ae 
0. aY 

d--  =k!Z  for x >  0, y =  0, 
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where 9 is the dimensionless latent heat. Finally we have the condition that 
only fuel and inert gases emerge from the surface. This condition gives 

&%-- ’7~ - - riz(y,-yFT) for x > 0, y = 0, (12) 
(r aY 

where it should be noted that cFT is the mass fraction of fuel in the transferred 
gas (see Kim et al. 1971). 

Equations (2)-(6) together with the boundary conditions (7)-(12) now give 
us a determinate system. However, before discussing solutions we consider 
further simplifying implications of the above. 

From (4b), (6) and (11) we have 

and use of (4b) and (10) in (12) gives 

We may then combine (13) and (14) such that 

We note in (15) that A, Q, yFT and 9 are all constants; if we make the further 
assumption pFlu=o = constant, an assumption which will be seen to be justified 
a posteriori, then (15) shows that [a/3F/ay]y=0 cc [apx/i3y]u,o. This result, together 
with (4a)  and (77, shows that px cc pF,  and i t  is convenient to introduce the 
function /3 = p(x, y) such that 

p, = - A,p, a = X ,  F, (16) 

where A,  is constant. Like p, the quantity p is continuous with continuous first 
and second derivatives and satisfies 

The constants A,  may be expressed in terms of the other physical constants 
as follows. If we define 

P(X, 0) = 1, (18) 

(19) 

(20) 

then (16) gives, using (4b) and ( lo) ,  

and (15) gives 

The values of the modified coupling function p and temperature 0 a t  the flame 
sheet can also be expressed in terms of the other physical constants. Thus if a 

A x  = -px(x,O) = Q Y ~ , - A ,  

A ,  = {-E” - QYFT - A) {Ax/@, + 2)l. 

27-2 
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subscript s is used to denote a quantity evaluated at the flame sheet, we deduce 
from (6) that yxa = y,, = 0 and from (4b) we have 

P F ~  = 0s = Px, + Q Y X ~ ,  

fiom which we may deduce, using (16), (19) and (20), 

and 

It also proves convenient to express A ,  and A,  in terms of b, and 0,. From (20) 
and (22) we have at once that 

Now, from (16) and (21) we have 19, = -A,/?,+Q&yX,, so that 

A ,  = -0slbs. (23) 

(24) Ax = (QYx- - es)//?s, 
and combining (19) with (24) gives 

and the temperature 0 given fiom (4b) and (6) as 

(28) 

we have to solve (2), (3), (5) and (17) subject to the boundary conditions (7)-(9), 
(13) and (18). The solution procedure is described in 0 3 and the results discussed 
in $4. 

- A d  for Y ’ Ys(4, 
-AxP+QYx, for Y < Y~(x), 

e = {  

3. The solution procedure 
In  the high Grashof number situations which we envisage, we are able to take 

advantage of the presence of the small parameter B in our governing equations. 
Thus we develop asymptotic solutions, formally valid as B+ 0, in both an outer 
and an inner or boundary-layer region. The approach closely parallels that 
adopted in I for the inert case. 

To first order (17) shows that /? must be constant on any streamline provided 
luil > ord(&). Thus we may assume, from the conditions (7), that b = o(1) 
everywhere in this outer region. The singular perturbation character of the 
problem is immediately obvious since this outer solution cannot satisfy the 
condition (18). The situation is similar for the velocity field because, if we assume 
that /? = o(&) in the outer region, an assumption which we justify below, then 
(3) show that the vorticity is constant, and by virtue of (7), zero on each stream- 
line in the outer region. This in turn implies that there is no O( 1) motion in the 
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outer region. As in I we shall fkd  that ord (1) > lujl > ord (d) in this outer 
region and hence these deductions are valid. 

The above results are consistent with the notion that the flow under consider- 
ation is driven within the boundary layer, or inner region, by the effects of 
internal heating. We shall see that the disturbance to the ambient conditions in 
the outer region is brought about by entrainment into the boundary layer 
exactly as in the inert case I. 

Consider now the flow in the inner, or boundary-layer region. As in I we define 
inner variables as follows: 

(29) where i = 0 for f = u,p,B,p,p, i = g  for f =v,$. 

In  (29), S is equal t o  U, V ,  P, R, B, 0 or Y when f is equal to zd, v, p ,  p, B, B or 
9 respectively. The stream functions Y and $ in the inner and outer regions 
respectively are defined such that 

1 x = 2, Y = E-%?J, f = f ( X , ? J , € )  = €is(%, Y,€) ,  

(30) I pu = a$py = ayP/a Y = RU, 
PV = - a$lax = - €3 aYlax = &RV, 

so that the continuity equation (2) is automatically satisfied. 
In  terms of these variables (3) and (17) become, ignoring terms which are 

o( 1) in €, 

wherein (31 b )  the equation of state (5 )  has been employed. As we have emphasized 
earlier it is unrealistic in this combustion situation to make the Boussinesq 
approximation, in which the fluid properties are assumed to be constant, with 
density variations accounted for only in the buoyancy term in (3). Without this 
approximation we may still simplify the inner equations (31) by introducing the 
Howarth transformation from variables (x ,  Y )  to ( X ,  Z ) ,  where 

I x = x, 
Z=/opR(x,s )ds=/o  = { l - y ) d s =  8P(X 8 )  Y-P(s,Y)+P(x,O)./  (32) 

Thus (33) 

+ az {-w-p +% a&} (34) and 

where Po = P(x, 0) .  If we also make the assumption that the viscosity and 
conductivity are proportional to the temperature, so that, from (6), 

(35) 

a ~ ( x ,  Y )  aqx, z) ap(x, z) - 
- ax ax 

pp = ph = 1, 
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we have as the equations to  be solved in the inner or boundary-layer region, from 
(28), (31) and (33)-(35), 

ay a Z \ r  a y a z y r  ap ap a 3 ~  ----- +- + @ -0 = - az axaz ax azz ax ax a 2 3  
( 3 6 4  

aqaz = o, f36W 

-A,B in Z > Z,(X), 

- AXB + Q Y X ,  in 2 < Z8(X) ,  
@ = {  ( 3 6 4  

with the Shvab-Zeldovich coupling functions subsequently determined from 
(27) and (29). The boundary conditions which have to be satisfied are deter- 
mined, as Z-+ co, by matching with the trivial solution in the outer region, so that 

B, P, aYrlaz - to  as Z+W, (37) 

and a t  the fuel surface, from (9), (13) and (19), 

B = l  at Z = O ,  
a~ .=YC~Y -0, -=-- 

ayP 

az az A ,  ax’ -- (38a-c) 

where in (38b) we have used pvl,,, = -~*[aY/ax],, = riz. 

a similarity solution, for which we write 

- 
As €or the inert case, discussed in I, the boundary-layer equations (36) admit 

(39) 

(40) 

I Y = e tx tp (7 ) ,  P = eix?a(q) ,  
= e,g(q), B = ~ ( 7 1 ,  

where 7 = etzlx+. 
In  terms of these new variables (36) become, using (23) and (26), 

527”’ + 3 F F  - PI2 - 2(G - (7 - e8G(0)) G’} = 0, 

JIPW 7 ’ 78, 
a’= { S + 8 @ ) ,  1 J 7 < 7J (41) 

5J” + 3gFJ’ = (3, (42) 

where a prime in these equations denotes differentiation with respect to 7, and 
we have written 8 = Ales. The boundary conditions (37) show that 

J,G,P‘+O as q+co. (4365-c) 

The boundary conditions (38) at Z = 0 now become, in terms of the similarity 
variables (39), 

3 g 9  1-p, 
S’(0) = 0, J’(0) = -- 5 0, ( - 1 - 8 )  ~(01, ~ ( 0 )  = 1, (44a-c) 

and we note that the flame-sheet location is determined from 

G’(ril) = 1. (45) 
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It has been found convenient when integrating the above equations numeric- 

(46) 

ally to eliminate the variable J .  Thus, from (41) and (42), G satisfies 

5G" + ~ u F G "  = 0, 

and at the wall 7 = 0, (44b, c) become 

3 u 9  
G ( 0 )  = ---F(O), G(0) = 8, 

5 08 
whilst it is also required from (41) and (43a) that 

G'+O as ~ + C C I .  

It should be noted that, although 

3, F', P", G, G' ( = 1) are continuous at 7 = qa, (49) 

G" is not continuous. The jump in G a t  7 = qS may be calculated from (41) as 

where the subscripts k refer to 7 = r8 k 0 respectively. 
The numerical method adopted to solve (40) and (46) subject to (43b, c), 

(44a) and (47a, b)-(50) is similar to that adopted for the inert-gas case in I, 
where it is described in more detail. Briefly, the range 0 < 7 < roo, where vrn is 
a finite quantity which is chosen to be sufficichtly large to represent the outer 
edge of the boundary layer 7 = a, is divided into the two zones 7 q8. In  each 
zone a Newton iteration procedure is adopted so that quasi-linearized forms of 
(40) and(46) are to be integrated. In  each zone each dependent variable is repre- 
sented by a Gnite Chebychev series as 

N 

j=1 
X(Z) = 2 ajTj- l (~)  (2 = F ,  G), (51) 

where 

where L = vrn - qs, so that - 1 < z < 1 in each zone. The 4N coefficients of the 
type a j  in (51), which are required to define the solution in the Chebychev repre- 
sentation, are determined by satisfying the differential equations, linearized as 
indicated above, in each of 7 2 qS at the N - 3 points 

z, = cos{(m-l)n/(N-4)), m = 1 ,..., N - 3 .  (53) 

This gives 427-12 equations for the 4N unknowns. The conditions (43b, c), 
(44a) and (47a, b)-(50) give a further 12 equations. The 4N unknown coefficients 
are thus determined by solving the 4N equations so derived and the iterative 
process proceeds as in I. The results of this numerical investigation are discussed 
in the next section. 

Before we go on to examine the effects of the boundary-Iayer flow upon the 
solution in the outer region we observe that in this combustion problem we 
might expect the flame-sheet temperature 0, to be large. We now discuss such a 
limiting situation. 
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The case we consider, formally in the limit Os-+ 00, is that in which 8, /9  remains 
finite, since in many cases the quantities 9 and 0, are of comparable magnitude. 
If we d e h e  new variables in this limit as 

then (40) and (46) become 

(55) 
5qP + 34p - $2 - 2$( 0) $' = 0, 

59" + 3 4 p  = 0, 

where a prime now denotes differentiation with respect to 5. The boundary 
conditions under which (55) have to be solved, again in the separate zones 
6 5 &, may be inferred from (43b, c), (44a) and (47a, b)-(50) by simply replacing 
F by 6, G by 6 and 2' by 8,LY8 provided that we retain, as is reasonable, 6 as a 
finite quantity in this limit. The method of solution of these modified equations 
(55)  is exactly that which has been adopted for finite 8, and the results are dis- 
cussed in the next section. 

We finally consider in this section the flow in the outer region, which has been 
shown to  be quiescent and isothermal to first order. Now provided that the 
velocities in the outer region despite being o( 1) are nevertheless larger than 
O(e*), and we show below that they are, we see that the leading term in the 
asymptotic solution of (1 7), regardless of its algebraic order in terms of the small 
parameter e, must be such that it is constant along the streamlines of the outer 
flow. If these streamlines originate at infinity, and we shall show this to be the 
case, then to all orders ,8 = 0 in the outer region. This justifies the assumption 
,8 = o(&) ma,de in $2. 

Consider next the velocity field. We see from (29) and (39), since P(c0) + 0, 
that 

is the appropriate asymptotic matching condition between the outer and inner 
solutions. Thus in the outer region we see from (56) that the velocity components 
are O(e3). We may then infer, from (3), that along the streamlines of the outer 
flow the vorticity to this order is constant and therefore equal to zero if the 
streamlines originate at infinity. For this two-dimensional flow, therefore, we 
have V2@ = 0 to  this order and if we write $ = e?@F(co) $o the problem for 

02$,  = 0, I 

The solution for $,, is 

$o = rtsin{j(n-#))/sinin, where r2 = x2+y2, # = tan-l(y/x). (58) 
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This solution (58) for the outer flow gives, in turn, a non-zero component of 
velocity, O(%), parallel to the surface y = 0 which will be accommodated by 
the next term of the inner solution. We do not pursue the solution in the inner 
region to this order; some discussion of the inert flow case can be found in I. 

4. Results 
We consider first the results which have been obtained for the boundary-layer 

flow by numerically integrating (40) and (46) subject to  the boundary conditions 
(43b, c), (44a), (47a, b )  and (48). The technique which has been employed, as 
already indicated in $3, involves the division of the boundary layer into the 
two zones q 5 7,. In  each of these zones the dependent variables are represented 
by finite Chebychev series involving, in all, 4N unknown coefficients. These are 
determined by satisfying the differential equations, suitably linearized, at the 
points z, in (53) in each zone, together with the boundary conditions and the 
conditions (49) and (50), which link the solution in each zone across 7 = qs. In  
all the calculations carried out we chose N = 20, and the outer edge of the 
boundary layer was approximated by qm = 16. It was found in practice that 
each of these values is sufficiently large to  ensure four decimal place accuracy in 
the solutions. In  the solution procedure adopted the boundary condition (47a) 
was not used directly. It was found to be convenient to specify P(0).  The flame- 
sheet location qa must also be specified before the equations can be integrated. 
For each value of 2’ the correct values of P(0) and rs were determined by linear 
interpolation between successive ‘solutions ’ until the conditions (45) and (47a) 
were satisfied. 
No fewer than five independent parameters characterize the boundary-layer 

solution. In  our calculations we have maintained four of these at  fixed values 
which we believe are representative of the combustion situations under considera- 
tion. Thus we choose CT = 0.72, p, = 0-5, 8, = 6.0 and 6 = 0-25; we have allowed 
the latent heat 9 to vary in order that we may model the different materials 
from which the combustible surface x > 0, y = 0 may be formed. The important 
parameters which emerge from the calculations are the flame-sheet location q,, 
the mass and heat transfer rates together with the shear stress at  the fuel surface. 
We note, using (39), that 

1 F(O)  = -+E3e,-*x+.li,  

~ “ ( 0 )  = (1  +A)  E~o;+x3[ae/ay-j,=o, 
P”(0) = (1 +A)  & ~ ~ x * [ a ~ / a y ] , _ , ,  

and in table i we show these parameters, together with the flame-sheet location, 
for various combustible materials which may form the surface x > 0,  y = 0. We 
also remark that the value of P(m) remains approximately constant over this 
range of values of 9 at about 3.5. Since it is the hot flame which acts as the 
primary ‘sink’ for the oxidant flow, the near-constancy of F(co) is consistent 
with the fixed value of 0, used in these calculations. 

In 6gure 1 we show the distributions of velocity, temperature and the coupling 



426 J .  F .  Clarke and N .  Riley 

Material 9 T I  F(0) ff'( 0) P"(0) 
n-octane 1.0 1.765 - 2.521 0.181 1.625 
Benzene 1.3 1.674 - 2.313 0.217 1.753 
Ethyl alcohol 2.9 1.424 - 1.665 0.347 2.162 
Methyl alcohol 3-8 1.351 - 1.452 0.398 2.296 
a-cellulose 10.0 1.151 - 0.794 0.571 2.667 

TABLE 1 

71 

FIGURE 1. The velocity profile F', temperature B' and coupling function J 
for the case 9 = 1. 

function J in the boundary layer for the case 2 = 1. These results are typical of 
the other values of 9; in particular we note that the velocity maximum occurs at 
the flame-sheet location. This is not entirely unexpected since density differences 
within the boundary layer are responsible for the induced pressure gradient. 
However it should be noted that Kim et al. do not find a coincidence between the 
velocity maximum and flame-sheet location when the plate is vertical. This is 
surprising since in that case buoyancy forces are directly responsible for the 
motion. 

In  figure 2 we show the flame-sheet location qs and the transpiration rate 
P( 0) for a range of values o f 9 .  As 2 increases we see that there is a tendency for 
the flame sheet to approach the fuel surface and for m to  decrease. This we might 
expect since aa 9' increases, with A and e, fixed, m must decrease for fixed 7, 
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FIUURE 2. The flame-sheet location 7, (solid curve) and blowing rate P(0)  (dashed curve), 
together with their asymptotic equivalents derived from (84) and (55)  for 6’. S 1 
(dot-dmh curves). 

[see (1 l)]. However any such attempt to reduce riz must by itselflead to a generally 
thinner boundary layer and smaller value of ys; the consequent increase in 
energy flux will then tend to increase m with the result that the flame will be 
blown away from the surface. An appropriate balance will ultimately arise 
which results in smaller values of qs and riz as noted. The competition between 
the contrary influences accounts for the relative insensitivity of ys and rh to 
changes in 9. 

In figure 3 we show the variation of surface shear stress and heat transfer at 
the fuel surface for the same range of values of 9. As the flame sheet, which of 
course is the intense reaction zone, approaches the surface we expect the rate 
of surface heat transfer to increase as shown. Similarly, since the velocity maxi- 
mum is always located at the flame sheet in our calculations we can expect that 
th0 surface shear stress will also increase with 9. This is confirmed by our results 
shown in figure 3. 

Figures 4 and 5 are asymptotic equivalents for 0, % 1 of figures 2 and 3, 
derived from numerical solutions of (55 ) .  It will be recalled that in this particular 
asymptotic limit 6,lLZ is maintained as a finite quantity. In  order that a com- 
parison can be sensibly made with those calculations which have been carried 
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out for 8,‘= [6 and k i t e  9 we have again chosen c-r = 0.72,6 = 0.25 and p, = 0.5 
in our solutions of (55). The trends which we have observed for finite 9 are again 
present and we have included in figures 2 and 3 results inferred from our 
solutions for 8, + 1. It will be seen that the asymptotic solution gives useful 
information for values of 8, which are typical in these combustion situations. 

As 9 increases we have noted that the flame sheet tends to  approach the fuel 
surface. The limit vs-+ 0 corresponds to the phenomenon of surface combustion. 
This limit can never be realized in the numerical calculations of this paper since 
we have set 6 = 0.25. Thus, as rs+O we must have p,+ 1 from the continuity 
of J ,  and from (25) we see that since Q and yx, will be fixed and finite on physical 
grounds A + 8, or 8 -+ 1. Although surface combustion is, then, beyond the scope 
of this paper we can readily discuss one particular case from the formulation of 
$ 3  and the results of I. First note that from (22b) ,  with A = 8,, 

(59) 8s = QYX, - ~ Y X J Y F T  ; 

and if (59) is now combined with (25) we have 

Now if we again adopt the limit of large flame-sheet temperature 8, 1, and 
introduce the transformations (54), then (56)  have to be solved for 6 and $. 
Suppose that we adopt the boundary condition &O+) = - 1, and defer for the 
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FIUURE 4. The asymptotic flame-sheet location f (solid curve) and the 
asymptotic blowing rate &O) (dashed curve) for 8, > 1. 
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FIUURE 5 .  The asymptotic shear-Etress parameter p(0) (solid curve) and 

heat-transfer parameter v(0) (dashed curve) for 8, %+ 1. 
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FIUURE 6. The streamlines associated with the outer flow. 

moment the consequences of ignoring the condition (47a), tben with the condi- 
tion $'(O+) = 0 from (44a)  and $ ' ( O + )  = 1 from (47b) with 6 = 1 together with 
$'(a) = $(a) = $'(a) = 0, a solution of (55) may be obtained. This problem 
has been studied in I, and from the results given therein for r = 0.72 we have 

$"(O+) = 0.911, $"(O+) = -0.161. (61) 

We must now examine the consequences of these results for our problem of 
surface combustion from a consideration of (47a). First, however, note that 
across the flame sheet, which now coincides with the fuel surface, we have from 
(50) and (60) 

If we now combine (62) with (47a) we see, using (54), that surface combustion 
with a blowing rate P(0) = - @  can only be sustained under the condition 
yFT = O.372yxa. This particular example of surface combustion gives little in- 
sight into the manner in which, for example, &-+ 1 as qs+ 0 and it is hoped to 
present a more detailed study of the limiting case of surface combustion, via the 
formulation presented in § § 2  and 3,  in a subsequent paper. 

We consider next the flow in the region outside the boundary layer as repre- 
sented by the solution (58). The streamlines associated with the outer flow, 
$o = constant, are shown in figure 6. This demonstrates how the boundary 
layer entrains fluid from the surrounding ambient atmosphere to maintain the 
supply of oxidant for the combustion process. This outer flow models the 'fie- 
wind' which is observed to blow inwards across the perimeter of a fire before, 
if the fire is of finite extent, it  develops into a vertical buoyant plume. On the 
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basis of their calculations, which involve no modelling of the combustion pro- 
cess, Smith et al. conclude that the fire-wind is driven by pressure forces and 
that the lateral inflow near a fire perimeter is of sink-like rather than boundary- 
layer type. As we see in figure 6 the outer flow, which we are interpreting as the 
fire-wind, is indeed of a sink-like character. Furthermore, as we have seen in 
5 3, induced pressure gradients are responsible for the flow. 

In the remaining section of this paper we describe a simple experiment that 
we have performed which helps to substantiate the theoretical work described 
above. 

5. Experiment 
A flat combustible surface was provided by clamping a number (usually two 

or three) of paraffin-impregnated plastic firelighterst between a pair of metal 
blocks. The upper surface of the metal blocks was coplanar with the flat upper 
surface of the firelighters and therefore simulated the situation to be found near 
the leading edge of the combustible interface in our theoretical model. Two 
parallel vertical sheets of float-glass made an open channel, with the combustible 
material in its floor, and provided a fair approximation to the two-dimensional 
geometry of the theory. The reasonable optical properties of float-glass made it 
possible for schlieren pictures to be taken. No attempt was made to isolate this 
simple apparatus from laboratory draughts, so some unsteadiness was always 
present in the flow which developed when combustion above the surface was 
fully established. Nevertheless it was possible to acquire flow and flame pictures 
like that exemplified in figure 7 (plate 1). 

The schlieren picture shows that there is a portion of the flame sheet and its 
associated boundary layer which is affected by the glass channel side walls 
(probably accentuated by some air leakage between the glass edge and the com- 
bustible surface). Despite this imperfection we feel that the qualitative and 
quantitative comparisons that are illustrated in figure 7 lend substance to the 
theoretical predictions. 
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FIGURE 7 .  (a )  Sclilieren picture of the flow indiicod by tho flame. Tlie horizontal comhustihle 
siirface lies along x > 0, y = 0. The schlieren knife-edge is horizontal; light areas 
have ?play > 0, dark areas Iia.ve ap/+/ < 0. The main flame sheet lies at t,lie sharp 
dark/light interface (whose intersection with the x axis has boon chosen as origin). 
The light region starting at about x = 2 mrn indicates the presence of a secondary 
flame resulting from side-wall int>erfercnco : it  masks the main flame sheet in the 
region, roughly, x: > 4 mm. ( b )  The full liries in t,liis skotch have been traced along tlitr 
dark/light interfacos on t,he photograpli. Tlie circles arid crossos are plotted from thc 
relation y = A x %  with d = 1.2 a,nd 0.6, rcspcctively. If one assumes that 0, = 6 and 
then uses (5) and ( 3 2 )  i t  can he s11oum tliat f' is roughly 4 2  at the flame sheet a n d  at 
the outer edge of the boundary layer. It) follows t,hat the upper edge of the layor lies 
where 7, defined in (30),  has the value 7 F vrn z 3.8; the flame sheet lies a t  vs w 1.9. 
Comparison of t>hese values with figure 1 i s  interesting and indicat'es some crude 
quantitative support for the theory provided that 9 is somewhat less than unity; 
7, is less sensitivc t'han 7, to l-ariations in 9. 
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